

DSG Projects FY 2023

Dr. Patrizia Rossi Detector Support Group Tuesday, October 10, 2023

Contributions

Hall A - Magnets

Eng and Antonioli

Møller magnets

- Set up communications between Siemens S7-1500 PLC controller and EPICS softIOC
- Developing instrumentation and control wiring diagrams
 - Drawings of temperature sensors and hardware voltage taps – complete
 - Drawings of voltage tap for PLC – in progress
- Developing CSS Phoebus screens for monitoring
 - Magenta boxes in the screens to the right are shown instead of values because EPICS softIOC is not running

Phoebus voltage tap screen for Magnet 4

Phoebus coil temperature screen for Magnet 1

Phoebus voltage tap summary

10/11/2023

Detector Support Group

3

Hall A - Field Mapping of SoLID aka CLEO

Eng and Leffel

Researched, designed, fabricated, installed, acquired data, and analyzed CLEO field

- Designed, fabricated, and deployed eight field–mapping units to measure **B** during ~100 A test
 - Fringe field after powering down the magnet is around the earth's magnetic field 0.25 G-0.65 G

Hall A - ECAL Six-Supermodule Heater

McMullen, Eng. and Leffel

Hall B - Environment Monitoring System

Eng

- Researched, designed, and implemented environment monitoring system
- Bosch BMP390 sensor system configured and deployed
 - System has Olimex ESP32-POE-ISO microcontroller
 - Allows a single cable for networking and power
 - $-\,$ Bosch has a pressure and temperature accuracy of ±3 Pa and ±0.5 $^\circ\text{C}$
- EPICS output of the Bosch pressure measurements and old sensors agree with each other
- EPICS output of Bosch temperature measurements has better resolution than EPICS output of old sensor temperatures, which is limited to 1°F

Existing sensor data converted to match units of new sensors

6

Hall C – NPS Controls and Monitoring System

Brown, Antonioli. and Bonneau

Control

Designed, coded, and installed control and monitoring system

- Fabricated distribution box
 - Provides +24 V to external flowmeters of the crystal and electronics zone chillers, which are read out using the Keysight mainframe
- Developed EPICS Phoebus GUIs to control and monitor temperature, relative humidity, and dewpoint
 - Phoebus screens for control and monitoring temperatures of back crystal zone shown below has been implemented in the Hall
 - Values shown in the monitoring screen below are values read in real time by the system

	Crysta	Alarm limit [°C] Crysta low high			ensor nable	Avg enabl	# e	of pts. to avg	Intik enable	Trip delay enable	Trip delay time [s]
	0	0	30		nabled	Enabl	ed	300	Enabled	Enabled	30
	5	0	30		nabled	Enabl	ed	300	Enabled	Enabled	30
	10	0	30		nabled	Enabl	ed	300	Enabled	Enabled	30
Monitoring											
	Crystal 1	r [°C]	Avg [°C]	σ [°C]	Intik status	Latch status	Crysta	IT[°C]	Avg [°C]	lr σ[°C] sta	ntlk Latch atus statu:
	0	22.12	22.65	0.42			540	21.73	22.14	0.35	
	5 2	21.73	22.14	0.35			550	16.49	15.63	0.49	
	10 2	21.40	21.70	0.29			560	14.91	13.61	0.78	
		F15	4	1	0/11	/2023	3		De	tector	Supp

Chiller system

Crystal	Alarm li Iow	mit [°C] high	Sensor enable	Avg enable	# of pts. to avg	Intik enable	Trip delay enable	Trip delay time [s]
540	0	30	Enabled	Enabled	300	Enabled	Enabled	30
550	0	30	Enabled	Enabled	300	Enabled	Enabled	30
560	0	30	Enabled	Enabled	300	Enabled	Enabled	30

High and low temperature alarm limits can be set (blue box, top screenshot). Monitored rolling average of temperatures (over 300 measurements; red box, bottom screenshot). With interlock enabled, if average temperature >30°C, high voltage trips after 30 s

ort Group

7

Hall C – NPS Ansys Thermal Analysis

Brown and Campero

increased from 20°C to 25°C

Ansys thermal analysis

- Ansys Mechanical transient analysis results concur with steady-state analysis results
- Ansys Fluent steady state model includes all required material thermal properties, cell conditions, boundary conditions and Shell Conduction features
 - Result is being analyzed

Central crystals reached thermal equilibrium at ~20°C when ambient temperature decreased from 25°C to 20°C

Jefferson Lab

Temperature plot (right- side view of NPS enclosure and crystal array). Lower temperature (blue color) at cooling plate and fans 10°C

10/11/2023

Velocity contour plot (right-side view of NPS enclosure and crystal array). Shows airflow due to fans, inside the detector and through the crystals

Detector Support Group

Hall D - FCAL 2

Leffel, Jacobs, and Antonioli

Hardware support for FCAL 2

- Refurbished 72 PbWO₄ crystals from the ComCal insert of FCAL 1
 - Unwrapped enhanced specular reflector (ESR) from crystal
 - Removed light guide cup by submerging the light guide in diluted acetone for 2-3 hours
 - Cleaned crystal with alcohol
 - Visually inspected crystal for defects
 - Rewrapped with ESR if needed (112 total of 140)
- Pre-shaped 112 ESR foils in oven to wrap refurbished crystals
- Wrapped 833 PbWO₄ SICCAS (Chinese) and CRYTUR (Czech Republic) crystals with ESR foil and Tedlar
- Soldering PMT (Hamamatsu R41253355027) divider base connectors with wires to provide high voltage to different dynodes and the photocathode (585 of ~1750 completed)

Mindy Leffel soldering wires to PMT divider base connector

Left: Populated PMT divider, right: connector

Mary Ann Antonioli cutting ESR film to size

10/11/2023

Detector Support Group

EIC - Beampipe Test Stand

McMullen, Jacobs, and Campero

Volumetric flow rate test to cool silicon layer 1 below 30°C with 20°C ambient air

- Test with six layers of thermal reflector (0.078" thickness) and beamline temperature at 100°C
- Temperature of AI pipe that represents silicon layer 1 is ~30°C for airflow of ~450 L/m

DSG Note 2023-29 DSG Note 2023-26 DSG Talk 2023-01

Plot shows airflow, beampipe temperature, and SL1 temperature Ansys simulation of 9-m long beampipe

9-m long beryllium beam pipe model with three • layers of Kapton insulator (0.39 mm)

10/11/2023

- Seampipe Temp. Simulated temperature changes along beampipe • when inlet is at 100°C for eight different inlet velocities
- Temperature of the inlet, middle, and outlet regions converge to 100°C for volumetric flow rate >7250 L/min

100

80

60

40

20

Air Flow Rate [L/min]

EIC – DIRC and RICH

Lemon, McMullen, Jacobs, and Bonneau

Designing laser test lab and associated peripherals

• Designed, prototyped, fabricated, and debugged laser interlock system

Assembled laser interlock PCB

- Designed photodiode readout circuit
- Developed Laser Operational Safety Procedure and training course for project
- Reviewing modifications to quartz bar shipping crates
 - Six crates received from vendor do not have necessary air-cushioned suspension system, foam for additional padding, and hand-removable latches
- Proposed design for mirror-reflectivity measurements for dualradiator and proximity-focusing RICHs
 - Reflectivity probe on hand is not rated for UV and can be irreversibly damaged in as little as three hours, reducing fibers' transmissivity to 30%
 - Beam mainly propagated through UV-rated optical fibers
 - Collimator adapts diverging light from fiber to a 4-mm diameter beam
 - Light reflects off mirror at a 45° incident angle
 - Beam is re-collected into an optical fiber for routing to spectrometer using a convex lens and fiber adapter mounted in a lens tube

DSG Note 2023-39

10/11/2023

Detector Support Group

Left: Shipping crate previously used to transport quartz bars with all necessary suspension and padding Right: New shipping crate with no suspension and padding

11

DSG R&D - Phoebus Alarm System

Bonneau

Summary

In the areas of

- system design
- research and development
- coding
- test and measurement
- electronics design
- fabrication
- assembly

dsg made contributions to several Hall projects and to EIC

